Mixture generalized linear models for multiple interval mapping of quantitative trait Loci in experimental crosses.
نویسندگان
چکیده
SUMMARY Quantitative trait loci mapping in experimental organisms is of great scientific and economic importance. There has been a rapid advancement in statistical methods for quantitative trait loci mapping. Various methods for normally distributed traits have been well established. Some of them have also been adapted for other types of traits such as binary, count, and categorical traits. In this article, we consider a unified mixture generalized linear model (GLIM) for multiple interval mapping in experimental crosses. The multiple interval mapping approach was proposed by Kao, Zeng, and Teasdale (1999, Genetics 152, 1203-1216) for normally distributed traits. However, its application to nonnormally distributed traits has been hindered largely by the lack of an efficient computation algorithm and an appropriate mapping procedure. In this article, an effective expectation-maximization algorithm for the computation of the mixture GLIM and an epistasis-effect-adjusted multiple interval mapping procedure is developed. A real data set, Radiata Pine data, is analyzed and the data structure is used in simulation studies to demonstrate the desirable features of the developed method.
منابع مشابه
Hierarchical generalized linear models for multiple quantitative trait locus mapping.
We develop hierarchical generalized linear models and computationally efficient algorithms for genomewide analysis of quantitative trait loci (QTL) for various types of phenotypes in experimental crosses. The proposed models can fit a large number of effects, including covariates, main effects of numerous loci, and gene-gene (epistasis) and gene-environment (G x E) interactions. The key to the ...
متن کاملInterval mapping of multiple quantitative trait loci.
The interval mapping method is widely used for the mapping of quantitative trait loci (QTLs) in segregating generations derived from crosses between inbred lines. The efficiency of detecting and the accuracy of mapping multiple QTLs by using genetic markers are much increased by employing multiple QTL models instead of the single QTL models (and no QTL models) used in interval mapping. However,...
متن کاملMultiple-interval mapping for quantitative trait loci with a spike in the trait distribution.
For phenotypic distributions where many individuals share a common value-such as survival time following a pathogenic infection-a spike occurs at that common value. This spike affects quantitative trait loci (QTL) mapping methodologies and causes standard approaches to perform suboptimally. In this article, we develop a multiple-interval mapping (MIM) procedure based on mixture generalized line...
متن کاملA general mixture model approach for mapping quantitative trait loci from diverse cross designs involving multiple inbred lines.
Most current statistical methods developed for mapping quantitative trait loci (QTL) based on inbred line designs apply to crosses from two inbred lines. Analysis of QTL in these crosses is restricted by the parental genetic differences between lines. Crosses from multiple inbred lines or multiple families are common in plant and animal breeding programmes, and can be used to increase the effic...
متن کاملInterval mapping of quantitative trait loci for time-to-event data with the proportional hazards mixture cure model.
Interval mapping using normal mixture models has been an important tool for analyzing quantitative traits in experimental organisms. When the primary phenotype is time-to-event, it is natural to use survival models such as Cox's proportional hazards model instead of normal mixtures to model the phenotype distribution. An extra challenge for modeling time-to-event data is that the underlying pop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biometrics
دوره 65 2 شماره
صفحات -
تاریخ انتشار 2009